( အီလက်ထရွန်းနစ် အစိတ်အပိုင်းများ IC ချစ်ပ်များ ပေါင်းစပ်ထားသော ဆားကစ် IC ) XC7A50T-2FGG484I
ထုတ်ကုန်ဂုဏ်ရည်များ
အမျိုးအစား | ဖော်ပြချက် |
အမျိုးအစား | Integrated Circuits (ICs) |
Mfr | AMD Xilinx |
စီးရီး | Artix-7 |
အထုပ် | ဗန်း |
ထုတ်ကုန်အဆင့်အတန်း | လှုပ်လှုပ်ရှားရှား |
LAB/CLB အရေအတွက် | ၄၀၇၅ |
လော့ဂျစ်ဒြပ်စင်များ/ဆဲလ် အရေအတွက် | ၅၂၁၆၀ |
စုစုပေါင်း RAM Bits | ၂၇၆၄၈၀၀ |
I/O အရေအတွက် | ၂၅၀ |
ဗို့အား-ထောက်ပံ့ရေး | 0.95V ~ 1.05V |
Mounting အမျိုးအစား | Surface Mount |
Operating အပူချိန် | -40°C ~ 100°C (TJ) |
အထုပ်/အခွံ | 484-BBGA |
ပေးသွင်းသူ ကိရိယာ ပက်ကေ့ချ် | 484-FBGA (23×23) |
အခြေခံထုတ်ကုန်နံပါတ် | XC7A50 |
ထုတ်ကုန်အချက်အလက် အမှားအယွင်းကို သတင်းပို့ပါ။
ပုံစံတူကြည့်ပါ။
စာရွက်စာတမ်းများနှင့် မီဒီယာ
အရင်းအမြစ်အမျိုးအစား | လင့်ခ် |
အချက်အလက်စာရွက်များ | Artix-7 FPGAs ဒေတာစာရွက် |
ပတ်ဝန်းကျင်ဆိုင်ရာ အချက်အလက် | Xiliinx RoHS လက်မှတ် |
အထူးအသားပေး ထုတ်ကုန် | USB104 A7 Artix-7 FPGA ဖွံ့ဖြိုးတိုးတက်ရေးဘုတ်အဖွဲ့ |
Environmental & Export အမျိုးအစားများ
ရည်ညွှန်းသည်။ | ဖော်ပြချက် |
RoHS အခြေအနေ | ROHS3 နှင့် ကိုက်ညီသည်။ |
Moisture Sensitivity Level (MSL) | ၃ (၁၆၈ နာရီ)၊ |
လက်လှမ်းမီမှု အခြေအနေ | လက်လှမ်းမမီ |
ECCN | 3A991D |
HTSUS | ၈၅၄၂.၃၉.၀၀၀၁ |
ပေါင်းစပ်ပတ်လမ်း
ပေါင်းစပ် circuit သို့မဟုတ် monolithic ပေါင်းစပ် circuit (IC၊ ချစ်ပ်တစ်ခု သို့မဟုတ် microchip ဟုလည်းရည်ညွှန်းသည်) သည် အစုတစ်ခုဖြစ်သည်။အီလက်ထရွန်းနစ်ဆားကစ်များသေးငယ်သော အပိုင်း (သို့မဟုတ် "chip") ပေါ်တွင်တစ်ပိုင်းလျှပ်ကူးပစ္စည်းပစ္စည်း၊ များသောအားဖြင့်ဆီလီကွန်.ဂဏန်းကြီးတွေသေးငယ်၏။MOSFETs(သတ္တု-အောက်ဆိုဒ်-တစ်ပိုင်းလျှပ်ကူးပစ္စည်းfield-effect ထရန်စစ္စတာများ) ချစ်ပ်အသေးတစ်ခုသို့ ပေါင်းစပ်ပါ။၎င်းသည် အဆက်ဖြတ်တည်ဆောက်ထားသည့် ပမာဏထက် ပိုသေးငယ်၊ ပိုမြန်ကာ စျေးနည်းသော ဆားကစ်များကို ဖြစ်ပေါ်စေသည်အီလက်ထရွန်းနစ်အစိတ်အပိုင်းများ.IC ရဲ့အစုလိုက်အပြုံလိုက်ထုတ်လုပ်မှုစွမ်းဆောင်ရည်၊ ယုံကြည်စိတ်ချရမှုနှင့် တည်ဆောက်မှု-ပိတ်ဆို့ရန် ချဉ်းကပ်မှုပေါင်းစပ် circuit ဒီဇိုင်းdiscrete ကို အသုံးပြု၍ ဒီဇိုင်းများအစား စံချိန်စံညွှန်းမီ IC များကို လျင်မြန်စွာ လက်ခံကျင့်သုံးရန် သေချာစေပါသည်။ထရန်စစ္စတာများ.ယခုအခါ IC များကို အီလက်ထရွန်းနစ် စက်ပစ္စည်းအားလုံးနီးပါးတွင် အသုံးပြုနေကြပြီး ကမ္ဘာကြီးကို တော်လှန်ပြောင်းလဲလာကြသည်။လျှပ်စစ်ပစ္စည်း.ကွန်ပြူတာများ၊မိုဘိုင်းဖုန်းများနှင့်အခြားအိမ်သုံးပစ္စည်းများယခုအခါ ခေတ်မီသော လူ့အဖွဲ့အစည်းများ၏ သေးငယ်သော အရွယ်အစားနှင့် ခေတ်မီသော IC များကဲ့သို့သော ကုန်ကျစရိတ်သက်သာစွာဖြင့် ဖန်တီးနိုင်သော ခေတ်မီလူ့အဖွဲ့အစည်းများ၏ ဖွဲ့စည်းပုံ၏ ခွဲမခန်းနိုင်သော အစိတ်အပိုင်းများဖြစ်သည်။ကွန်ပျူတာပရိုဆက်ဆာများနှင့်မိုက်ခရိုကွန်ထရိုလာများ.
အလွန်ကြီးမားသော ပေါင်းစပ်မှုနည်းပညာတိုးတက်မှုများဖြင့် လက်တွေ့ဆောင်ရွက်ခဲ့ပါသည်။သတ္တု-အောက်ဆိုဒ်-ဆီလီကွန်(MOS)တစ်ပိုင်းလျှပ်ကူးကိရိယာ တီထွင်ဖန်တီးမှု.၎င်းတို့၏ဇာစ်မြစ်သည် 1960 ခုနှစ်များကတည်းက၊ ချစ်ပ်များ၏အရွယ်အစား၊ အမြန်နှုန်းနှင့် စွမ်းရည်တို့သည် ကြီးမားစွာတိုးတက်လာခဲ့ပြီး အရွယ်အစားတူချစ်ပ်များပေါ်တွင် MOS transistor များပိုမိုများပြားသော MOS transistors များနှင့် ပိုမိုကိုက်ညီသော နည်းပညာဆိုင်ရာ တိုးတက်မှုကြောင့် ခေတ်မီချစ်ပ်တစ်ခုတွင် MOS ထရန်စစ္စတာပေါင်း ဘီလီယံပေါင်းများစွာ ပါဝင်နိုင်သည်။ လူ့လက်သည်း၏အရွယ်အစား။ဤတိုးတက်မှုများသည် အကြမ်းဖျင်းအားဖြင့် အောက်ပါအတိုင်းဖြစ်သည်။Moore ၏ဥပဒေယနေ့ခေတ်ကွန်ပြူတာချစ်ပ်များသည် စွမ်းဆောင်ရည်အဆပေါင်း သန်းနှင့်ချီပြီး ၁၉၇၀ ခုနှစ်များအစောပိုင်းက ကွန်ပြူတာချစ်ပ်များ၏ အမြန်နှုန်းထက် အဆထောင်ပေါင်းများစွာ ပိုင်ဆိုင်စေပါသည်။
IC များတွင် အဓိက အားသာချက် နှစ်ခုရှိသည်။discrete circuits များ: ကုန်ကျစရိတ်နှင့် စွမ်းဆောင်ရည်။ချစ်ပ်များကို ၎င်းတို့၏ အစိတ်အပိုင်းများအားလုံးကို ယူနစ်တစ်ခုအဖြစ် ရိုက်နှိပ်ထားသောကြောင့် ကုန်ကျစရိတ်မှာ နည်းပါးပါသည်။ဓါတ်ပုံရိုက်နည်းTransistor တစ်လုံးကို တစ်ကြိမ်တည်း တည်ဆောက်တာထက်ထို့အပြင်၊ ထုပ်ပိုးထားသော IC များသည် discrete circuit များထက် များစွာနည်းသော ပစ္စည်းကို အသုံးပြုပါသည်။IC ၏ အစိတ်အပိုင်းများသည် သေးငယ်သော အရွယ်အစားနှင့် နီးစပ်မှုကြောင့် နှိုင်းယှဉ်လျှင် ပါဝါအနည်းငယ်သာ သုံးစွဲသောကြောင့် စွမ်းဆောင်ရည် မြင့်မားပါသည်။IC များ၏ အဓိက အားနည်းချက်မှာ ၎င်းတို့ကို ဒီဇိုင်းဆွဲခြင်းနှင့် လိုအပ်သည့် ပစ္စည်းများ ဖန်တီးရာတွင် ကုန်ကျစရိတ် မြင့်မားခြင်း ဖြစ်သည်။ဓာတ်ပုံမျက်နှာဖုံးများ.ဤကနဦးကုန်ကျစရိတ်မြင့်မားခြင်းသည် IC များသည် စီးပွားဖြစ်ဖြစ်နိုင်သည့်အခါမှသာ ဆိုလိုသည်။မြင့်မားသောထုတ်လုပ်မှုပမာဏမျှော်လင့်နေကြသည်။
အသုံးအနှုန်းများ[တည်းဖြတ်ပါ။]
တစ်ခုပေါင်းစပ်ပတ်လမ်းအဖြစ်သတ်မှတ်သည်-[1]
ဆောက်လုပ်ရေးနှင့် ကူးသန်းရောင်းဝယ်ရေး ရည်ရွယ်ချက်များအတွက် ခွဲခြား၍မရသော ပတ်လမ်းတစ်ခု သို့မဟုတ် အချို့သော circuit အစိတ်အပိုင်းများ ဆက်စပ်နေပြီး လျှပ်စစ်ဖြင့် အပြန်အလှန် ဆက်နွယ်နေသည့် circuit တစ်ခု။
ဤအဓိပ္ပါယ်နှင့် ကိုက်ညီသော circuits များအပါအဝင် မတူညီသောနည်းပညာများစွာကို အသုံးပြု၍ တည်ဆောက်နိုင်ပါသည်။ပါးလွှာသောဖလင်ထရန်စစ္စတာများ၊အထူရုပ်ရှင်နည်းပညာများ, သို့မဟုတ်ပေါင်းစပ်ဆားကစ်များ.သို့သော် ယေဘူယျအားဖြင့် အသုံးပြုမှုပေါင်းစပ်ပတ်လမ်းsingle-piece circuit တည်ဆောက်မှုကို မူလက a ဟု ခေါ်သည်။monolithic ပေါင်းစပ်ပတ်လမ်းဆီလီကွန် အပိုင်းအစတစ်ခုပေါ်တွင် တည်ဆောက်လေ့ရှိသည်။[2][3]
သမိုင်း
စက်ပစ္စည်းတစ်ခုတွင် အစိတ်အပိုင်းအများအပြား (ခေတ်မီ ICs များကဲ့သို့) ပေါင်းစပ်ရန် အစောပိုင်းကြိုးပမ်းမှုတစ်ခုဖြစ်သည်။Loewe 3NF1920 ခုနှစ်များမှ လေဟာနယ်ပြွန်။IC များနှင့်မတူဘဲ၊ ၎င်းကိုရည်ရွယ်ချက်ဖြင့်ဒီဇိုင်းပြုလုပ်ထားသည်။အခွန်ရှောင်ခြင်း။ဂျာမနီတွင်ကဲ့သို့ပင်၊ ရေဒီယိုအသံဖမ်းစက်များတွင် ရေဒီယိုအသံဖမ်းစက်တွင် tube ကိုင်ဆောင်သူမည်မျှရှိသည်အပေါ် မူတည်၍ ကောက်ခံသည့်အခွန်ရှိသည်။၎င်းသည် ရေဒီယိုအသံဖမ်းစက်များကို ပြွန်တစ်ခု ကိုင်ဆောင်ထားနိုင်စေခဲ့သည်။
ပေါင်းစပ်ပတ်လမ်းတစ်ခု၏ အစောပိုင်း အယူအဆများသည် ဂျာမန်အင်ဂျင်နီယာ 1949 တွင် ပြန်လည်ရောက်ရှိခဲ့သည်။Werner Jacobi[4](Siemens AG)[5]ပေါင်းစပ်ပတ်လမ်းကဲ့သို့သော တစ်ပိုင်းလျှပ်ကူးပစ္စည်း အသံချဲ့စက်အတွက် မူပိုင်ခွင့်တစ်ခု တင်သွင်းခဲ့သည်။[6]ငါးကိုပြသသည်။ထရန်စစ္စတာများအဆင့်သုံးဆင့်ရှိ ဘုံအလွှာတစ်ခုပေါ်တွင်အသံချဲ့စက်အစီအစဉ်။Jacobi သည် သေးငယ်ပြီး စျေးသက်သာကြောင်း ထုတ်ဖော်ခဲ့သည်။နားကြားကိရိယာသူ့မူပိုင်ခွင့်၏ သာမာန်စက်မှုလုပ်ငန်းဆိုင်ရာ အသုံးချမှုများအဖြစ်။၎င်း၏မူပိုင်ခွင့်ကို စီးပွားဖြစ်အသုံးပြုမှုကို ချက်ချင်းအစီရင်ခံခြင်းမရှိသေးပေ။
အယူအဆ၏ အစောပိုင်း အဆိုပြုချက်မှာ၊Geoffrey Dummer(1909-2002) သည် ရေဒါ သိပ္ပံပညာရှင်တစ်ဦးဖြစ်သည်။Royal Radar တည်ထောင်ခြင်း။ဗြိတိသျှ၏ကာကွယ်ရေး ဝန်ကြီးဌာန.Dummer သည် အရည်အသွေး အီလက်ထရွန်နစ် အစိတ်အပိုင်းများ တိုးတက်မှု အတွက် ဆွေးနွေးပွဲ တွင် လူအများအား စိတ်ကူးကို တင်ပြခဲ့သည်။ဝါရှင်တန်ဒီစီ၁၉၅၂ ခုနှစ် မေလ ၇ ရက်။[7]သူသည် သူ၏အကြံဥာဏ်များကို ဖြန့်ဝေရန်အတွက် စာတမ်းဖတ်ပွဲများစွာကို လူသိရှင်ကြားပေးခဲ့ပြီး ထိုကဲ့သို့သောပတ်လမ်းကို ၁၉၅၆ ခုနှစ်တွင် တည်ဆောက်ရန် ကြိုးစားခဲ့သော်လည်း မအောင်မြင်ခဲ့ပေ။ 1953 နှင့် 1957 ခုနှစ်အကြား၊Sidney Darlingtonနှင့် Yasuo Tarui (လျှပ်စစ်ဓာတ်ခွဲခန်း) ထရန်စစ္စတာများစွာသည် ဘုံတက်ကြွသောဧရိယာကို မျှဝေနိုင်သည့် အလားတူချစ်ပ်ဒီဇိုင်းများကို အဆိုပြုထားသော်လည်း မရှိပေ။လျှပ်စစ်အထီးကျန်အချင်းချင်း ခွဲရန်။[4]
Monolithic ပေါင်းစပ်ထားသော ဆားကစ်ချစ်ပ်ကို တီထွင်မှုများဖြင့် ဖွင့်ထားသည်။Planar လုပ်ငန်းစဉ်အားဖြင့်Jean Hoerniနှင့်p–n လမ်းဆုံ အထီးကျန်အားဖြင့်Kurt Lehovec.Hoerni ၏ တီထွင်မှုတွင် တည်ဆောက်ခဲ့သည်။Mohamed M. Atallaဘောရွန်နှင့် ဖော့စဖရပ် အညစ်အကြေးများကို ဆီလီကွန်သို့ ပျံ့နှံ့စေသည့် Fuller နှင့် Ditzenberger တို့၏ မျက်နှာပြင် passivation ဆိုင်ရာ အလုပ်၊Carl Froschနှင့် Lincoln Derick ၏ မျက်နှာပြင်ကာကွယ်မှုဆိုင်ရာ အလုပ်နှင့်Chih-Tang SahOxide ဖြင့် diffusion masking ကို လုပ်ဆောင်သည်။[8]